Skip to main content

Send email attachments to Dropbox

Have you ever wonder to send email that get stored in Dropbox. Here is a way to do it. http://sendtodropbox.com/. Create a dropbox account and connect the account with this website http://sendtodropbox.com/

Once you authorize dropbox to this website, you will be getting a email id something@sendtodropbox.com and just you can send email to this Mail ID. Automatically, the contents are stored in the "Attachments" folder inside dropbox. 

This will be a very nice application, if in case if your office does not have internet and you want to send information to someone else, you can send email and that gets stored in Dropbox.

Also if you are a teacher or professor, you can accept assignments, project reports to be sent to a email address and that gets stored in dropbox folder. Also there is a provision for a teacher to group the contents based on the students Registration number, categorize based on date of email or users email address.

Also if a small company want to hire employees, they can filter resumes based on the subject of the email. A Small example is given below

Example:

In the above image you can automatically unzip the contents of the email and as well you can categorize the emails like 

attachments / Date / Filename (so this is what the folder structure in Dropbox).

Try it!!!!

Comments

Popular posts from this blog

Installing TexLive 2019 in Ubuntu 18.04

Installation of TexLive 2019 in Linux (Ubuntu 18.04 LTS)
TeX (Tech)

Installation of TexLive 2019

Please watch the video for full installation



I used .iso file to download, the Total size is 3.3GB for Linux,

and i used the torrent file to download, it took me just 20 min to download the entire .iso file

Extract the .iso file to a folder and open a terminal

$] sudo ./install-tl
(it goes into a terminal mode, which is faster compared to the GUI Mode)

$] sudo ./install-tl -gui
after the installation, set the PATH, MANPATH and INFOPATH as suggested by LATEX

export PATH=$PATH:/usr/local/texlive/2019/bin/x86_64-linux
export MANPATH=/usr/local/texlive/2019/texmf-dist/doc/man
export INFOPATH=/usr/local/texlive/2019/texmf-dist/doc/info

put these lines in to the /home/pradeepkumar/.bashrc

$] gedit /home/pradeepkumar/.bashrc
We have installed TexLive 2019 and texstudio.

To install texstudio

$] sudo apt install texstudio
The look and feel of TexStudio looks like this image.


texlive, it install everyt…

Implementing a new system call in Kernel version 2.6.32

A system call is used by application or user programs to request service from the operating systems. Since the user programs does not have direct access to the kernel whereas the OS has the direct access. OS can access the hardware through system calls only.The following files has to be modified for implementing a system call/usr/src/linux-2.6.32.5/arch/x86/kernel/syscall_table_32.S/usr/src/linux-2.6.32.5/arch/x86/include/asm/unistd_32.h/usr/src/linux-2.6.32.5/include/linux/syscalls.h/usr/src/linux-2.6.32.5/MakefileNew set of files to be createdCreate a new directory newcall/ inside the path “/usr/src/linux-2.6.32.5/” Create new files Makefile, newcall.c and put them in the /usr/src/linux-2.6.32.5/newcall/ folder Create new user files (in any folder of Linux) to test the system call
testnewcall.c, testnewcall.h (created in /home/pradeepkumar) syscall_table_32.S Find the file /usr/src/linux-2.6.32.5/arch/x86/kernel/syscall_table_32.S and add the following line at the end
"…

Electrical Machine Design (equations)

FactorsDC Machine Transformers Induction Machines Synchronous MachinesOutput EquationPa=CoD2Ln, where Pa=P/h for generators, Pa=P for motorsFor Single Phase
Q=2.22 f Bm Ai Kw Aw d10-3
For Three Phase
Q=3.33 f Bm Ai Kw Aw d 10-3Q=CoD2 L ns
KVA Input Q=
HP * 0.746 / Cos f * hQ=CoD2 L ns
KVA Input Q=
HP * 0.746 / Cos f * h
For Turbo alternators
Q=1.11Bavac KwsVa2 L 10-3/nsOutput CoefficientCo=Bav ac* 10-3where Bav-magnetic loading and ac - electric loadingDNACo=11 Kws Bav ac 10-3Co=11 Kws Bav ac 10-3 Choice of Magnetic LoadingFlux Density in Teeth Frequency of Flux Reversals Size of machineDNAMagnetizing current, Flux Density, Iron lossIron loss, Stability, Voltage Rating, Parallel Operation, Transient ShortCircuit current Choice of Electric LoadingTemperature rise,
speed of machine, Voltage, Armature reaction, CommutationDNAOverload Capacity, Copper losses, Temperature rise, Leakage ReactanceCopper loss, Synchronous reactance, Temperature rise, Stray Load losses,
Voltage rating Flux …