**Standard Forms**

**each term in the function**

**can have any number of literals.**

**Example, F1 = a +b’c + cde**

**There are 5 variables in F1 (a,b,c,d,e)**Canonical form terms should be written as m0, m1… (sum of Products) or M0, M1, M2… (Product of sums). Each term in the canonical form should have all the literals.

**Example: F1 = ab’c’d’e’ + abcd’e’ + abcde**

**More about Canonical Forms**

**Minterms**It is

**Sum of Products**Canonical form is Sum of Mintermsthree variable minterms are shown belowxabcminterms0000m0=a’.b’.c’1001m1=a’.b’.c2010m2=a’.b.c’3011m3=a’.b.c4100m4=a.b’.c’5101m5=a.b’.c6110m6=a.b.c’7111m7=a.b.c

**Maxterms**Product of Sum (PoS)Canonical form is Product of MaxTermsthree variable maxterms are shown belowxabcminterms0000M0=(a+b+c)1001M1=(a+b+c’)2010M2=(a+b’+c)3011M3=(a+b’+c’)4100M4=(a’+b+c)5101M5=(a’+b+c’)6110M6=(a’+b’+c)7111M7=(a’+b’+c’)usually Mi = (mj)’Express the boolean function F = A + BC in a sum of minterms. The function has three variables, so

*will be*

**F = A + BC****F = A(B + B’) + (A +A’) BC**

*[sin…*

*
*