Skip to main content

Functions in C

Almost all the programming languages uses functions. Functions are the entities which are grouping a set of statements which do a specific job or set of jobs.

Example: sum of integers, sum of float number, complex number addition.

All the above three can be implemented as a single function or three separate functions.

When someone wants to use that, a function can be simply called.

So function implementation happens as

  • Function prototype or Function declaration
  • Function definition or function implementation
  • Function call

Function prototype

  • It is necessary to specify the name of the function, the parameters and the return type to the compiler that the function is being defined in this program.
  • The prototype ends with a semicolon

syntax:

int sum(int, int); //function prototype

Function Definition

This is the actual function definition which shows the function implementation.

for the above syntax here is the function

int sum(int a, int b)

{

int c;

c=a+b;

return c;

}

The above function is returning an integer, hence int is specified. If a function is not returning any thing, a void can be used.

Function call

The last is the function call, which when being needed a simple call will make the function to work. Here is the example

int main()

{

int x,y,z;

scanf(“%d %d”,&x,&y);

z=sum(x,y); //function call

printf(“The sum is %d”, z);

return 0;

}

Once the function is called, the control goes to the actual implementation and execute the statements inside the function and the value is returned to the main function.

Components of a function

  1. Name of the function
  2. Return type
  3. Parameters or arguments

In the above example

name of the function is : sum()

return type is : int

parameters are: int, int

Comments

Popular posts from this blog

Implementing a new system call in Kernel version 2.6.32

A system call is used by application or user programs to request service from the operating systems. Since the user programs does not have direct access to the kernel whereas the OS has the direct access. OS can access the hardware through system calls only.The following files has to be modified for implementing a system call/usr/src/linux-2.6.32.5/arch/x86/kernel/syscall_table_32.S/usr/src/linux-2.6.32.5/arch/x86/include/asm/unistd_32.h/usr/src/linux-2.6.32.5/include/linux/syscalls.h/usr/src/linux-2.6.32.5/MakefileNew set of files to be createdCreate a new directory newcall/ inside the path “/usr/src/linux-2.6.32.5/” Create new files Makefile, newcall.c and put them in the /usr/src/linux-2.6.32.5/newcall/ folder Create new user files (in any folder of Linux) to test the system call
testnewcall.c, testnewcall.h (created in /home/pradeepkumar) syscall_table_32.S Find the file /usr/src/linux-2.6.32.5/arch/x86/kernel/syscall_table_32.S and add the following line at the end
"…

Installing TexLive 2019 in Ubuntu 18.04

Installation of TexLive 2019 in Linux (Ubuntu 18.04 LTS)
TeX (Tech)

Installation of TexLive 2019

Please watch the video for full installation



I used .iso file to download, the Total size is 3.3GB for Linux,

and i used the torrent file to download, it took me just 20 min to download the entire .iso file

Extract the .iso file to a folder and open a terminal

$] sudo ./install-tl
(it goes into a terminal mode, which is faster compared to the GUI Mode)

$] sudo ./install-tl -gui
after the installation, set the PATH, MANPATH and INFOPATH as suggested by LATEX

export PATH=$PATH:/usr/local/texlive/2019/bin/x86_64-linux
export MANPATH=/usr/local/texlive/2019/texmf-dist/doc/man
export INFOPATH=/usr/local/texlive/2019/texmf-dist/doc/info

put these lines in to the /home/pradeepkumar/.bashrc

$] gedit /home/pradeepkumar/.bashrc
We have installed TexLive 2019 and texstudio.

To install texstudio

$] sudo apt install texstudio
The look and feel of TexStudio looks like this image.


texlive, it install everyt…

Electrical Machine Design (equations)

FactorsDC Machine Transformers Induction Machines Synchronous MachinesOutput EquationPa=CoD2Ln, where Pa=P/h for generators, Pa=P for motorsFor Single Phase
Q=2.22 f Bm Ai Kw Aw d10-3
For Three Phase
Q=3.33 f Bm Ai Kw Aw d 10-3Q=CoD2 L ns
KVA Input Q=
HP * 0.746 / Cos f * hQ=CoD2 L ns
KVA Input Q=
HP * 0.746 / Cos f * h
For Turbo alternators
Q=1.11Bavac KwsVa2 L 10-3/nsOutput CoefficientCo=Bav ac* 10-3where Bav-magnetic loading and ac - electric loadingDNACo=11 Kws Bav ac 10-3Co=11 Kws Bav ac 10-3 Choice of Magnetic LoadingFlux Density in Teeth Frequency of Flux Reversals Size of machineDNAMagnetizing current, Flux Density, Iron lossIron loss, Stability, Voltage Rating, Parallel Operation, Transient ShortCircuit current Choice of Electric LoadingTemperature rise,
speed of machine, Voltage, Armature reaction, CommutationDNAOverload Capacity, Copper losses, Temperature rise, Leakage ReactanceCopper loss, Synchronous reactance, Temperature rise, Stray Load losses,
Voltage rating Flux …