Skip to main content

C Program 3 – To check whether a number is Armstrong Number

The armstrong number is of the form 153= 13 + 53 + 33

The input is : 153 or any other number

output: The number is armstrong or not.

Processing: take 153 as an example, remove 3, 5 and 1 in the reverse order (using % operator) and take the power of 3 and add to the sum variable.

if the total sum and the original number, both are same, then that is the arm strong number.

if else, the number is not an armstrong number

#include <stdio.h>
#include <conio.h>

int main()
{
    int original_num, check, temp, sum=0;
    printf("Enter the number to check for armstrong number");
    scanf("%d", &original_num);
// Get the original number
    temp=original_num;
    while(original_num>0)
//run the loop till the number becomes 0
    {
     check=original_num%10; 
//remove the last digit using modulo operator
     sum=sum+check*check*check; //the last digit is taken power to 3 and added to sum
     original_num=original_num/10; //truncate the last digit and run the loop again
     }
     if(sum==temp)
     printf("This is an armstrong number\n");
     else
     printf("This is not an armstrong number \n");
     getch();
     return 0;
}

Comments

  1. Thank u for the all yhe programs which u has attached to ur blog..

    ReplyDelete
  2. Thank you,sir for publishing these programs on your website

    ReplyDelete
  3. Thankyou sir.I WAS FULLY SATISFIED WITH THIS BLOG.:))

    ReplyDelete
  4. i cant understand wat is tis

    ReplyDelete
  5. THANKYOU SIR

    ReplyDelete

Post a comment

Popular posts from this blog

Implementing a new system call in Kernel version 2.6.32

A system call is used by application or user programs to request service from the operating systems. Since the user programs does not have direct access to the kernel whereas the OS has the direct access. OS can access the hardware through system calls only. The following files has to be modified for implementing a system call /usr/src/linux-2.6.32.5/arch/x86/kernel/syscall_table_32.S /usr/src/linux-2.6.32.5/arch/x86/include/asm/unistd_32.h /usr/src/linux-2.6.32.5/include/linux/syscalls.h /usr/src/linux-2.6.32.5/Makefile New set of files to be created Create a new directory newcall/ inside the path “ /usr/src/linux-2.6.32.5/ ” Create new files Makefile, newcall.c and put them in the /usr/src/linux-2.6.32.5/newcall/ folder Create new user files (in any folder of Linux) to test the system call testnewcall.c, testnewcall.h (created in /home/pradeepkumar ) syscall_table_32.S Find the file /usr/src/linux-2.6.32.5/arch/x86/kernel/syscall_tab

How to Access MOODLE in Intranet and Internet

When Moodle is accessed either in Intranet or internet, there will not be any issue. But occasions when the MOODLE Site has to be accessed both in the intranet and in the Internet, here is a simple trick Server Used: IBM Blade Servers Operating system: Windows Server 2008 Moodle Version: 2.4 WAMP Server is used. Number of Users: 3000 (Students) + 200 (Faculty) Open the config.php from ~/moodle/config.php include these lines $CFG->wwwroot = 'http://'.$server_id.'/vitcc'; $CFG->dataroot  = 'C:\\wamp\\moodledata'; before the following line $CFG->directorypermissions = 07xx; Restart the WAMP Server and you can Check MOODLE Site both in Internet and Intranet. The above Image tells the intranet Link and the internet link can be opened outside the campus network

Electrical Machine Design (equations)

Factors DC Machine Transformers Induction Machines Synchronous Machines Output Equation P a =C o D 2 Ln, where Pa=P/h for generators, Pa=P for motors For Single Phase Q=2.22 f B m A i K w A w d 10 -3 For Three Phase Q=3.33 f B m A i K w A w d 10 -3 Q=C o D 2 L n s KVA Input Q= HP * 0.746 / Cos f * h Q=C o D 2 L n s KVA Input Q= HP * 0.746 / Cos f * h For Turbo alternators Q=1.11B av ac K ws V a 2 L 10 -3 /n s Output Coefficient C o =B av ac* 10 -3 where Bav-magnetic loading and ac - electric loading DNA C o =11 K ws B av ac 10 -3 C o =11 K ws B av ac 10 -3 Choice of Magnetic Loading Flux Density in Teeth Frequency of Flux Reversals Size of machine DNA Magnetizing current, Flux Density, Iron loss Iron loss, Stability, Voltage Rating, Parallel Operation, Transient ShortCircuit current