Skip to main content

Runtime Error (Exception) Handling

ADA handles programmer defined exceptions and system defined exceptions
Some of the system defined exceptions are like 
  1. NUMERIC_ERROR - raised whenever the abnormal precision in the program like divide by zero 
  2. STORAGE-ERROR - raised whenever the program runs out of memory space
  3. CONSTRAINT_ERROR - asserts when a variable goes out of its bound
  4. TASKING_ERROR - raised during the incorrect use of tasks
  5. PROGRAM_ERROR- raised whenever an exception is not captured by any other conditions
Example on Exceptions

//Program to create two programmer defined exceptions

declare 
P,PRESSURE:float;
HIGH_PRESSURE, LOW_PRESSURE:exception;
begin 
 loop
    P:=READ_PRESSURE(PRESSURE);
    if P<100>
raise LOW_PRESSURE;
    elseif P>150 then 
raise HIGH_PRESSURE;
end if;
end loop;

exception 
when LOW_PRESSURE => put("Warning: Very Low Pressure");
when HIGH_PRESSURE => put ("Warning: High Pressure");

  • When exceptions are raised in multiple procedures or block and Procedures, handling the exceptions can be done using any of the procedure 
  • For Example, If there are three procedures X,Y and Z. X calls Y and Y calls Z, now there is an exception at Z (which does not have exception handler), the control will transfer the previous procedure Y (Which contains the exception handling mechanism) and handled over there.
  • Similary if a block does not have an exception handler, then the procedure which includes the block handles the expection , if that procedure contains the exception handler

Comments

Popular posts from this blog

Implementing a new system call in Kernel version 2.6.32

A system call is used by application or user programs to request service from the operating systems. Since the user programs does not have direct access to the kernel whereas the OS has the direct access. OS can access the hardware through system calls only. The following files has to be modified for implementing a system call /usr/src/linux-2.6.32.5/arch/x86/kernel/syscall_table_32.S /usr/src/linux-2.6.32.5/arch/x86/include/asm/unistd_32.h /usr/src/linux-2.6.32.5/include/linux/syscalls.h /usr/src/linux-2.6.32.5/Makefile New set of files to be created Create a new directory newcall/ inside the path “ /usr/src/linux-2.6.32.5/ ” Create new files Makefile, newcall.c and put them in the /usr/src/linux-2.6.32.5/newcall/ folder Create new user files (in any folder of Linux) to test the system call testnewcall.c, testnewcall.h (created in /home/pradeepkumar ) syscall_table_32.S Find the file /usr/src/linux-2.6.32.5/arch/x86/kernel/syscall_tab

How to Access MOODLE in Intranet and Internet

When Moodle is accessed either in Intranet or internet, there will not be any issue. But occasions when the MOODLE Site has to be accessed both in the intranet and in the Internet, here is a simple trick Server Used: IBM Blade Servers Operating system: Windows Server 2008 Moodle Version: 2.4 WAMP Server is used. Number of Users: 3000 (Students) + 200 (Faculty) Open the config.php from ~/moodle/config.php include these lines $CFG->wwwroot = 'http://'.$server_id.'/vitcc'; $CFG->dataroot  = 'C:\\wamp\\moodledata'; before the following line $CFG->directorypermissions = 07xx; Restart the WAMP Server and you can Check MOODLE Site both in Internet and Intranet. The above Image tells the intranet Link and the internet link can be opened outside the campus network

Electrical Machine Design (equations)

Factors DC Machine Transformers Induction Machines Synchronous Machines Output Equation P a =C o D 2 Ln, where Pa=P/h for generators, Pa=P for motors For Single Phase Q=2.22 f B m A i K w A w d 10 -3 For Three Phase Q=3.33 f B m A i K w A w d 10 -3 Q=C o D 2 L n s KVA Input Q= HP * 0.746 / Cos f * h Q=C o D 2 L n s KVA Input Q= HP * 0.746 / Cos f * h For Turbo alternators Q=1.11B av ac K ws V a 2 L 10 -3 /n s Output Coefficient C o =B av ac* 10 -3 where Bav-magnetic loading and ac - electric loading DNA C o =11 K ws B av ac 10 -3 C o =11 K ws B av ac 10 -3 Choice of Magnetic Loading Flux Density in Teeth Frequency of Flux Reversals Size of machine DNA Magnetizing current, Flux Density, Iron loss Iron loss, Stability, Voltage Rating, Parallel Operation, Transient ShortCircuit current