Skip to main content

Program Modelling Concepts

Modelling Processes for Software Analysis before Software Implementation
Data Flow Graph (DFG)
  • Data Flow Graph (DFG) as the name says only the data which is flowing in to a process taken into account. for example going to a bank for depositing the cash includes the data 1) input is account number and 2) output data is balance in the account.
  • Other examples: Finding the average marks scored by a student: the input data is grades or marks scored and output data is the average grades or marks. the process is the (sum/total number of subjects).
  • usually the input data is fed in to a process and output data comes after processing the input data.
  • DFG does not have any conditions within it, but has only data entry point and one data output entry point.
  • When there is only one set of values of each of the inputs and only one set of values of the outputs for the given input, a DFG is also known to be Acrylic Data Flow Graph (ADFG)
  • Example of ADFG: In an FIR Filter with
  • y6=a0x6+a1x5+......+a6x0, in this equation for a FIR filter, there are 7 multiplication units , each consumes only one memory to store and has only one value, i.e x0.....x6 has one value and a0, a1....a6 each has one value, so a0x6,.......a6x0 each will also have one value and y6 is also have only one value. So this example comes under ADFG
  • But the examples of Non Acrylic DFG includes 1) A status flag setting in a device 2) Input as per output condition of the previous process


Comments

Popular posts from this blog

Implementing a new system call in Kernel version 2.6.32

A system call is used by application or user programs to request service from the operating systems. Since the user programs does not have direct access to the kernel whereas the OS has the direct access. OS can access the hardware through system calls only. The following files has to be modified for implementing a system call /usr/src/linux-2.6.32.5/arch/x86/kernel/syscall_table_32.S /usr/src/linux-2.6.32.5/arch/x86/include/asm/unistd_32.h /usr/src/linux-2.6.32.5/include/linux/syscalls.h /usr/src/linux-2.6.32.5/Makefile New set of files to be created Create a new directory newcall/ inside the path “ /usr/src/linux-2.6.32.5/ ” Create new files Makefile, newcall.c and put them in the /usr/src/linux-2.6.32.5/newcall/ folder Create new user files (in any folder of Linux) to test the system call testnewcall.c, testnewcall.h (created in /home/pradeepkumar ) syscall_table_32.S Find the file /usr/src/linux-2.6.32.5/arch/x86/kernel/syscall_tab

How to Access MOODLE in Intranet and Internet

When Moodle is accessed either in Intranet or internet, there will not be any issue. But occasions when the MOODLE Site has to be accessed both in the intranet and in the Internet, here is a simple trick Server Used: IBM Blade Servers Operating system: Windows Server 2008 Moodle Version: 2.4 WAMP Server is used. Number of Users: 3000 (Students) + 200 (Faculty) Open the config.php from ~/moodle/config.php include these lines $CFG->wwwroot = 'http://'.$server_id.'/vitcc'; $CFG->dataroot  = 'C:\\wamp\\moodledata'; before the following line $CFG->directorypermissions = 07xx; Restart the WAMP Server and you can Check MOODLE Site both in Internet and Intranet. The above Image tells the intranet Link and the internet link can be opened outside the campus network

Electrical Machine Design (equations)

Factors DC Machine Transformers Induction Machines Synchronous Machines Output Equation P a =C o D 2 Ln, where Pa=P/h for generators, Pa=P for motors For Single Phase Q=2.22 f B m A i K w A w d 10 -3 For Three Phase Q=3.33 f B m A i K w A w d 10 -3 Q=C o D 2 L n s KVA Input Q= HP * 0.746 / Cos f * h Q=C o D 2 L n s KVA Input Q= HP * 0.746 / Cos f * h For Turbo alternators Q=1.11B av ac K ws V a 2 L 10 -3 /n s Output Coefficient C o =B av ac* 10 -3 where Bav-magnetic loading and ac - electric loading DNA C o =11 K ws B av ac 10 -3 C o =11 K ws B av ac 10 -3 Choice of Magnetic Loading Flux Density in Teeth Frequency of Flux Reversals Size of machine DNA Magnetizing current, Flux Density, Iron loss Iron loss, Stability, Voltage Rating, Parallel Operation, Transient ShortCircuit current